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FORWARD

The enclosed material consists of lecture notes prepared for A Short Course

on Inertial Guidsnce precented by Engineering Extension and Fhysical Sciences
Extension, University of California, lLos Angeles, October 10-21, 1960. The
thecry of inertial instruments, platforms, and error analysis are presented

in other parts of the course. This material is concerned mainly wvith the proper
utiliszsation of inertially derived position and velocity data in a wvay wvhich will
fulfill the missior objectives.
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ROCKET VEMICL.. GUIDANCE SCEEMES

1.0 INTRODUCTION

_ S
The guidance scheme or philosophy for a rocket or ballistic vehicle differs from
that of a cruise vehicle in two principal respects. The first is a result of the
fact that a rocket vehicle thrusts at high levels for relatively small fractions
of its total flight time, while essentially the opposite is true for a cruise
vehicle. S8ince significant control forces are available only during powered flight,
the rocket vehicle's guidance system must be able to direct the vehicles course
during this time in a wvay vhich will precisely influence its position and/or
velocity minutes, hours, or even months later.

The second major difference is in the area of dimensions. Rocket guidance systems
are thre: dimersiomal, with vehicles being guided between two points in ipertial
space. Cruise vehicle guidance systems, on the other hand, are basically two
dimensional in nature, with the third dimension being fixed or externally supplied.
Vehicles are guided over a known surface like, for example, the earth.

1l.1 Vehicle Characteristics

Rocket vehicles have lengths wvhich range from a fev feet in the case of short

range missiles to 100 feet or more in the case of ICMM's and space vehicles.

Weights igu.in range from a fev pounds to hundreds of thousands of pounds. They

can have any number of stages, ome to four being the most common and may be

either liquid or solid propelled. Thrust accelerations during each stage usually
vary frcm 1.5-3 g's at ignition to 8-10 g's at burnout. The structu.s, particularly
for the larger vehicles, is extremely light with at least 90 percent of the gross
wveight being fuel and oxidizer. The resulting lack of rigidity often phcéc

rather severe limitations on the vehicle's maneuvering capability.

*The author would 1ike to acknovledge the contributions by his many collesgues in
~ the guidance areas at Spéce Technology Laboratories. HNe would in particular like
to single out J. M. Bachar, P. Baskin, J. A. Joseph, T. W. Layton, J. W. McCarthy,
¥. J. McLaughlin, R. N. Southworth, and D. W. Whitcombe of the Inertial Guidance
Department. R. M. Page of the Guidance and Navigation Department, and W. Schroeder
of the Computers and Quidance Department.
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_ Flight path control is usually obtained by pointing the missile im the direc-
tion of desired thrust, with changes in attitude being obtained by momentarily

deflecting the direction of thrust. This can be accomplished by gimballing

the thrust chamber in the case of a liquid or the nozzle in the case of a

solid. Alternatively,the flame pattern can be deflected by means of Jet vanes

or jetavators placed in the thrust stream. Guidance can be radio, inertial

- or a combination of the two. The discussion in this chapter, vhile aimed

primarily at ipertial guidance, is frequently general enough to apply equally well

to other types of systems.

1.2 Trajectory Characteristics

i

The trajectory for a rocket vehicle can be divided into three types of phasges
as shown in Pigure 1: I powered flight, II free flight, and III re-entry.

-

N - o

(a) zCm (b) PRARTH SATELLITE

I - Powered Flight ,
Flight Phases { II - Pree or Ballistic Flight
II1I - Re-entry

Figure 1 - SOME TYPICAL ROCKET TRAJECTORIES
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There will be one or more each of the powered and free flight phases. There
will be a re-entry phase only if the payload is returning to earth or arriv-
ing at some other planet having an atmosphere.

The initial povered phase is the most complex, because of the exit atmosphere.
The trajectory usually dbegins with the missile rising vertically for a few
seconds. During this time it rolls to the proper heading. The vehicle then
executes its pitch maneuver; after s short transient, usually called transi-
tion turn, a zravity or i;;;—;i}; turn begins and continues until the missile
has effectively left the atmosphere. The gravity turn, wvhich is accomplished
by causing the missile to thrust always along its velocity vector, minimizes
drag effects and aerodynamic heating. The gravity turn is usually continued
to some staging point, although this is not always the case, particularly vhen
there is only a single ntage. After leaving the atmosphere, structural con-
straints can be relaxed and a more arbitrary attitude profile can be pre-
scribed. A very high acceleration vehicle, however, can achieve the desired
velocity before it ever leaves the atmosphere. This can cause significant

stesring problems.

When thrust has been terminated, the vehicle begins its free flight, where
gravity is the only acting force. The free flight trajectory lies completely
vithin a plane vhich contains the center of the earth and ,will be in the shape
of a conic - either an ellipse, a parabola, or a hyperbola, depending on
whether the velocity is below or above escape velocity, the parabola being the
limiting case. In the case of a ballistic missile, the ellipse intersects the
earth at the target. Actually the earth’s oblateness causes the trajectory to
be non-planar and to differ slightly from a true ellipse. Similarly, the in-
fluence of other celestial bodies on earth satellites and space probes keeps
them from being pure conics. The thrust-coast sequence can be repeated essen-
tially any number of times depending only on the mission.
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Any rocket which returns to earth, such as a ballistic missile or a mann=ed
space vehicle, must finally undergo a re-entry phase. Eere non-nominal re-
entry conditions such as winds or density variations can also contribute to
system insccuracy, since these sffects are usually not predictable during the
boost guidance period. If re-entry guidance is used, then these effec’s are

eliminated.

1.3 The Guidance Problem

The thrust of a rocket engine is a complex function of the engine (and propellant)
parameters, the air pressure, the temperature, the vehicle acceleration, and to e
lesser extent, a variety of other quantities. Por a given set of engine and
‘vehiclc parameters, any desired trajectory can be synthesized by using simulation
techniques on a high speed digital computer, providing, of course, that the per-
formance limitations of the vehicle are not exceeded and provided the relative
positions of vehicle and target are known. On the computer the desired trajectory
is achieved by time programming vehicle attitude and terminating thrust at the
appropriate time or times. How then is the powered flight of an actual vehicle
controlled so that it too accomplishes its desired mission?

A Simple Example - A simple example for purposes of illustration the German
V-2 missile, developed near the end of World War II'. This misegile had a take-of?f
weight of 28,600 pounds, a thrust of 59,800 pounds, and a maximum thrust accelera-
tion of 6.4 g's. A typical trajectory is suown in Figure 2,

100 4
215 sec
75 -
Miles
50 -
25 +. 70886
BO 392 sec Impact
- e /L
50 100 150 200 -7 2%0
Miles

Figure 2 - V-2 TRAJECTORY

#See for example, 'Inertinl Guidance for Rocket-Propelled Missiles", by
W. T. Russell, Jet Fropulsion, January 1958.
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Por this cese, the gigsile had a range of 230 miles and nominally burmed out at
70 seconde, about 15 miles downrange with & speed (V) of about 600G fps and a

turnout angle {y) measured ‘rom the horiicatal of avbout 547

A simple scheme for guiding such a vehicle is agair to program sttitude and
burnout as functions of time as (g done in the simula“ion. A pitch attitude
programmer ig inotarled in the missile and its output compared withk the gimbai
angles of an inertial platform, the difference being used as the control system
error signal. Yav and roll csa elso be programsed, probatly to zero. A clcck
is used to shut off the engine at 7O seconds or, alternatively, only enough fuel
is placed in the missile soc that the engine burms out at 7O seconds.

The scaeme Jjust outlined performs very well as long as both the missile and its
environment are nominal. The impact accuracy is limited only by the performance
of the programmer and the atiitude reference. A nominal missile is, however,
orly the average of an ensemble, with any given vehicle differing from the
nominal to some degree. Some of the more siguificent perturbations as far as
the trajectory is concerned a:e given in Table 1.

Table 1
Significant Perturbations

Thrust Veriation
Initial Mags Variation
Mass Flow Rate Variation
Thrust Misallignments
Drag Variations

Wind (gusts and shear)

Thrust and mass variations can be in the neighborhood of a few percent, mis-
alignments arcund a degree, and winds sometimes in the hundreds of mph. While
1% is clear that such perturbations can cause impact errors, it is necessary

to examine the equations of motion if a more quantitative indication of accurscy
is desired. ) S T
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An Error Analysis - For a range of 230 miles, the earth can be assumed
flat to a first approximation. If x 1is downrange and 2 is up and if
the re-entry atmosphere is ignored, the equations which describe the missile's
|

flight from burnout (BO) to impact are

X = x ¢kt . (1)
et 1 2
t o=z 4 "ottf - 568 t“ (2)

vhere Xy, 1 To 0 *o , and io are B0 positions and velocities, t“ is the
time of free flight, and g 1is gravitational acceleration equal to 32.2 rpaz .
The problem can be further simplified 1if it is assumed that 2z = LA and that

xo is small compared to x . Hence

x f iotff (3)
0 ¥ bt Lgitl (u)
- o ff 2 e

¥rom (3) and (4) 1t follows that

teg r 4 80 (5)
snd 2 % ;
z
x ¢ + 8°° (6)
or ir polar form
. 2 Vi sin2y
x ¥4 — (1)

Prom (6) the velocity miss coefficients in Table 2 are easily derived. These
coefficientty relate burnout velocity errors to impact position errors.
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Table 2 - MISS COEFFICIENTS POR V-2 TRAJECTORY
—_r

Coefficient Expression Kumerical Value for i
V. = 6000, yv_ = S50 |
(o] [e] i
23 !

ox 0 .. mi
5-; + = 0.060 Tps !
2% |

ox ) mi

8{ + z 0.0hlb W'

The effect of a typical perturbation will nov be examined. Comsider the case
vhere the thrust is 5% high during the entire 70 seconds of powered flight as
shown by the upper path in Figure 3. The velocity at burnout is actually the

Time ~
L Cutoff /
150 (70 sec) /
/
/7
VT Cutoff._~, X
100+ Nominal BO
Thousands . (70 seconds)
of feet High
(vertical) Thrust
50 4 Nominal
Trajectory
V. =« 6000 fps
r, = 5u° ‘
o -4 A
0 50 100

Thousands of Feet
_ —— — (Horizontal)

Figure 3 - V-2 POWERED FLIGHT FOR NOMINAL AND HIGH THRUST
integrated effects of both thrust and gravity so that
k) = Ky, = 3500 (8)

& Bi'ro‘i = U800 (9)

whare the "T" subscript indicates thrust and the "g” subacript gravity.
// . :
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Por a 70 second powered flight, igo is equal to 2254 fps, assuming g to

e a constant. Nence

bk, = Anm = .05(3500) = 175 fps (10)
ok, - Mm - . c(4800 + 2254) = 353 fps (1)

\

Using the miss coefficients from Table 2, Ax can be computed to be

Hx = .0’6/(.115)+ .044(353) = 26.0 nilés (12)

Clearly a deowmrange miss of this size would make the system unacceptable for
most applicatioms.

A More Sophisticated System - If the system is to perform adequately in
the face of axpected perturbations, then it appears that some closed loop scheme
must bs emplcyed. The (Qermans took the first step in this direction by mounting
an integxating accelerometer along the V-2's roll axis. Thrust wvas then terminated
vhen a pre-set value of thrust velocity was reached. Again conside? the case of
s missile with thrust 5% high. Referring to (8) and (9) it is seen that the only
BO velocity perturbation will be due to igo vhich will be 5% lov in magnitude
since the time to BO 1is reduced by this emount and.- g has been assumed con-
stant. The reduction in time, of course, is due to the fact that the pre-get
value of V, vill be reached earlier due to the high thrust. The downrange

TO
miss 1a now computed to be

&x = Obh Aio | (13)
« .0k (.05}(2254) = 5.0 miles
Comparing (13) and (12) shows that the downrange miss has been reduced by a
factor of five. A further reduction could probably be achieved by cutting off as
a function of both time and thrust velocity. Beyond this, path variations in
gravity and non-standard burnout position would have to be considered. Also

o

(2]
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attention would have to be paid to the lateral direction where winds and mis-
alignments can cause substantial errors. In Section 2, a more basic approach
to the guidance probleg’ig_gg;gn, and the basic elements of a system are dis-

cussed.
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2.0 FLEMENTS OF GUIDANCE

In the previous section, it was shown that a considerable improvement in system
accuracy can be obtained with a relatively simple guidance system employing a
single body mounted accelerometer. It is easily shown, however, that the future
trajectory of a vehicle does not depend on any single variable, but on all six
components of its present position and velocity (and time also in the case of a
moving target). It is therefore obvious that in general any really precise
guidance system must measure and utilise (at least implicitly) all seve-, vari-
ables. For purposes of analysis, the system can be divided into three functions

(1) Navigation ‘

(2) Computation

(3) Control ‘
In the paragraphs thnt_fpllov, each of these functions, as well as their combined

capability, is examined in detail. Inertial components are assumed to be pertect,
since component error effects can be analyzed separately.

»
2.1 The Navigation Functiocn

Ravigation, as defined here, consists of determining the vehicles position and
velocity in some known frame of reference. Related to this is the computational
coordinate system, which can be either inertial or earth fixed. It can be of
the local vertical type, but usually is not. Two of the more common coordinate
systems are

(1) Launch-€entered Inertial - The system is inertial and is centered at
the launch site at the instant of launch. It typically has x hori-
zontal and in the launch direction, ¢ vertical, and y completing
the right handed set. It may be desirable from a computational étnnd-
point to rotate x and t somevhat in the x-z plane.

(2) Launch Centered Earth Pixed - This is an earth fixed coordinate systenm,
having the same original orientation as (1). It is used primarily when
it is desirable, for hardwvare reasons, not to remove earth rate torquing
from the gyros at launch. Computationally it has both advantages and
disadvantages to be discussed later.

#It is pomsible to in effect combine the navigation and computation functions
into a single operation. Such schemes are not covered here.
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Any actual inertial guidance syastem has up to three other coordinate systems
of interest. All four have the same center, but may have different orienta-
tions. Pirst there is the platform coordinate system determined by the
leveling and alignment references. Secondly there is the gyro coordinate
system. Finally there is the accelerometer coordinate asystem. Originally
there was only a single system, but schemes presently being used to reduce
component errors and simpiify computations frequently require all four.

From a computitional standpoint, the only onea of interest are the accelero-
nmeter and computational coordinate systems, since it is necessary that the
airborne computer mechanize the appropriate transformation matrix.

The Navigation ILoop - Since accelerometers measure only non-gravitational

forces, the total acceleration is given by

*

f(t) ~ &(R) + ay(t) (18)

vhere R 18 inertial position, :T is thrust or measured acceleration,
and g 18 gravitational acceleration. The block diagram for a navigational
or kinematic loop 1s shown in Figure L. As can be peen, sensed acceleration

is rotated into the computational coordinate system and 1s then added to the

R

A {

oo 1]

Y

& rotation |®r +- R t t
———— matrix ' ‘ f
*;; o 0
fo s

== gravity
&(R) computation

.

Figure 4L - THE NAVIGATION LOOP

BRI e

*A bar over a variable, as in g , indicates a vector quantity.
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gravitational acceleration which has been computed based on the courputed position.
Position, of course, is obtained by doubly integrating the total acceleration.

All but the actual sensing of acceleration is usually accomplished in the computer,
in most cases a digital computer. If, as is frequently the case, the accelerometer
actually generates pulases representing velocity increments, the computer accumu-
lates the increments continuously and periodically adds the total to the integrated
gravitational acceleration. When accuracy permits an analog computer can be used.

Here the separation between sensors and computer may be rather obscure.

The presence of the gravity computation is one of the basic features of a precise
inertial guidanre system vhich distinguishes it from the more rudimentary variety
like the one descridbed in Section 1. 1If all trajectories were close to nominal,
there would actually be no need for a gravity computation, since the effect of
gravity could be pre-calculated. Non-standard missiles, launch delays with a
non-earth-fixed target, winds, etc., vill,hovever,cause non-standard gravitational
accelerations. This is particularly true of long range missiles where both the
magnitude and direction of g can change appreciably during the long powered
flight period.

The Gravity Computation - The basic expression for gravity assuming a
round earth 1is

[ ]]

.--Iﬁﬂ‘_jé (15)
vhere R equals the position vector measured from the :zenter of the earth, 0

ie the universal gravitational constant, and M 1is the mass of the earth. If
oblateness is considered, as {t must be in most cnses’, the formuia contains addi-
tional terms. From a mechanization standpoint, there are two objections to equa-
tion (15). First the coordinate system is unnatural for an inertial system;
'second, and most important, the expression contains a division and a square root,
both of vhich are relatively slov processes in airborne digital computers.

The above problem can often be circumvented by observing that in many cases the
gravity expression need be valid over only a few miles in y and a few
hundred miles in x and 3z . If such is the case, (15) can be\expanded in

*If not considered, oblateness cen cause a miss in the order of 10 n.mi. for
a 5500 n.mi. ICBM. "
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*
a Taylor series about a point midwvay along the powered flight trajectory, an
example being

g = (F+ ﬁo) oM [C° +Cyx 4+ Coz + C3x2 + Chz2 + Csxz] (16)

Like any other power series, the number of terms required depends on the varia-
tions in R and the accuracy desired. It can be shown that all of the coeffi-
cients are functions of the launch latitude, launch azimuth, and expansion point.
It is possidle also to include the effect of centripetal acceleration in the ex-

pression wvhen an earth fixed coordinate system is used.

Dynsmic Behavior - Some insight into the dynamic behavior of the naviga-
tion loop can be obtained by writing the components of (15) in terms of a
rectangular coordinate system wvith its origin in the vicinity of the trajectory
and its 2z axis vertical. Assuming motion in the trajectory plane, only 8y
and g, will be considered. These can be written !

- M x '
- - 17
Gx [xz . (Ro . z)2]3/2 » (17)
- M(z + Ro) (18)
= T E (R, v P

vhere it is easily shown that GM 1is equal to gOROZ . Expanding equation
(14) into component form gives

X = a, +8 (19)

(20)

¥8ee for example, "A Polyncmial Gravity Expansion for the Arma Inertial Ouidance
System", (Confidential), by D. W. Whitcombe, Space Technology Laboratories Report

GM 41.2-37, 17 December 1956.
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Writing the perturbation equations for (19) and (20) and assuming that gravity

perturbations arelgpg_to position perturbations gives

.. agx agx

Gk = Doy ¢ g OX <+ g L2 (21)
) b:)
Sz Sz (22)

L = lbap, v g OX ¢+ =

Taking the partial derivatives of (17) and (18) in the vicinity of the origin

and substituting them into (21) and (22) gives the perturlaticn equations for
the navigation loop
P asis i

g
A'x'4-§9-Ax=An,rx : (23)

B2 = ——fAr = on, (24)

The solutions to (23) and (24) for constant values of AIT perturbations are

A"'I‘x &
Ox = TR (1 - cos \/ - t] (25)
gO RO RO
-
bz = g%- [cosb\/;ﬁ t - 1) (26)
o 0 [}

Near the surface of the earth, the sinusoidal oscillation in x has the familiar
Schuler frequency where 2x JR°750 =~ 84 minputes. The 2z channel i:, of course,
divergent wvith time. For the three dimensional case, the behavior of the y

. channel is identical to that of the x channel. The point to be brought out 1s

that the computational loop is "Schuler tuned" even though'the platf rm is not
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locally leveled. Since, however, rocket vehicles invariably have powered flight
times much shorter than 84 minutes, acceleration errors propagate intc veloeity
and position errors proportional tu time and time squared; from a perturbation
standpoint, the gravity loop appears to be open for time intervals small compared
to the Schuler period. )

B

e

Multiple Guidance Periods - When inertial guidance is to be used for the
launching of high altitude earth satellites or for space travel, additionai
povered flight periods can occur after long periods of free flight. In order
to esteblish the initial conditions for the navigation loop at the beginning of
a subsequent powered flight period, it is of course, possible to operate the
navigation loop during the free flight period. If this is done, (1) accelero-
meters must be disabled, since any output during the free flight period is
erroncous and should be ignored, (2) the gravity formula or expansion must be
vnlid over the entire free flight region, and (3) the digital computer may con-
sume considerable power over a_long coast.

A second method for establishing the initial conditions for ﬁhe second powered
flight or burn is to predict them from the observed first burnout position and
velocity. Since the guidance equations can control four of the initial condi-
tionlf it is necessary to predict only the remaining three. The prediction
approach, which can be accomplished with either explicit formulas or polymomial
expansions, has the disadvantage of requiring more computer memory. All things
considered, though, 1t is usually the preferred approach for free flights of
any appreciable duration.

2.2 The Computation Function

Given the position and velocity of the vehicle as well as the time, the computa-
tion function consists of utilizing this information to generate error or status
signals vhich can be used to control the flight path of the rocket in a way vhich
vill result ia the missions being accomplished. The functions used to generate
the control error (or status) signals are commonly called "guidance equations”.

*This is shown in Jection 2.2.
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Tarust MEEEIEEE;.Control - Rocket eagines whose thrust can be controlled in
magnitude as well as direction are said to have thrust magnitude control. Vehicles
with this feature have more flexitility. For example, they can b~ made to fly the
exact nominal trajectory and hence can be made to burnout at a pre-specified posi-

tion, velocity, and time. The guiliance computations in this case cen be greatly
simplified, aince it is only necessary to measure the three ccLpcnents of thrust
acceleration and to compare them or their time derivative with the nominal profiles
vhich have been stored as functions in the airborne computer. By controlling the
direction (steering) and the magnitude (throttling) of the thrust it is possible
to match the stored profiles to an arbitrary degree, depending only on the response

of the control system.

A typical configuration for a system with thrust magnitude control is shown in
Pigure 5. Besides being simple to mechanize, such a system can be advantageous

g
e — —_——— 8 _—_ —— §®
Target \ e — R
- Thrust i -
Data + Steering or Vehicle ,l.
————{ Velocity -——’Q——-{ Control Lav Tc s —=4 Kinematics 7
Program ! Dynami |

i

T - e - - -

Vo | t v Inertial i |

— J( j~4-———{ Measurement *}
o

l |

Unit
Pigure’ﬁ":'A GUIDANCE SYSTEM WITH THRUST CONTROL

vhen it is necessary to match a desired trajectory exactly, as in the case with

the rendesxvous problem. It should be pointed out, however, that the combinstion

of launch time variations and a non-earth-fixed target causes the nominal trajectory
concept to loose most of its meaning. Throttling in any case has not Leen con-
sidered desirable from a propulsion hardware standpoint, so very few rocket engines
have this capability. The remainder of this chapter is therefore concerned only
vith the class of vehicles whose thrust can be ~ontrolled in dAirection only, and

whose thrust magnitude varies {(n +he order of a few percent from engine %o engine.
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Available Techniques - Most of the available techniques for guiding rocket
vehicles, were developed as a part of the various ballistic missile programs.
Since these vehicles are intended to deliver their payloads to a precise point
on the surface of the earth, the first approach to their guidance was to control
the missiles flight p..a on the basis of predicted errors in impact. Punctions

of the form ,
\

My = f4(Rs , t) (27)

M. - £(R R t) ‘ (28)
can be generated, vhere Md is the downrange miss and Mc is the crossrangc
miss, both at the target altitude. The functions will differ slightly with the
miss coordinate system employed. The one most often used is the 5o called
instantaneous impact print (IIP) coordinate system. This is an orthogonal
coordinate system centered at the target, with the Md axis defined by the
dowvnrange IIP locus or the locus of impact points vhich occurs wvhen only the
thrust cutoff time of a nominal vehicle is varied.

Irpact error in the actual system is controlled by changing the flight path
(steering) in the l'terfi_2£53931°n (yaw) until M, 1is driven to zero and
then terminating thrust vhen "d reaches tero. Por this case, pitch steering
is not required, since only two degrees of control are necessary. Nere an open
loop pitch attitude program can be used, e.g., constant attltude.

While the above scheme is workable, it has several disadvantages. First of all

the Md and Me expressions are both functions of seven variables and are
laborious to compute. Probably even more immortant is the fact that the expressions
are not general and are avkward for anything but ballistic missile (ICBM, IRBM, etc.)
applications. HNence, the "required velocity" concept is nov more generally used’.

fuch of the materlal on required velocity is extracted from, "An Introduction to
Inertial Guidance Concepts for Ballistic Missiles", (Tutorial Report) by David W.
Whitcomdbe, 8Space Technology Laboratories, 12 April 19%59.
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Required Velocity - This concept is based on the fact that at each space-

P
tine poéint in the powered flight region, a required velocity vector

R, t) (29)

may be defined and computed such that the resulting free flight trajectory will
satisfy four general guidance constraints.

Consider for example the ICBM trajectories shown in Pigure 6. Although Al and
A2 arrive at point A at different times, all three trajectories can be made
to "hit" the target. That is, after a period of time, tee (the time of free
flight), the three trajectories satisfy the three guidance constraints that R
be equal to il‘ . .Consider, however, the two trajectories originating at

Y T Trajectory Al
- £LA1 . /
. ~
- /'/ ~,
vRAl Y trtAZ N Trajectory A2
/ - T T~
P - ¢ ~J Trajectory B
3 £18 ~ /
w - — —_—— T — - - —_— .
A _ -~ /7 — <Y \‘\ \
Pl - XK Desired
Target

™ | o Ry

Pigure 6 - THREE FREE FLIGHT TRAJECTORIES, WHICH
ALL HIT THE DESIRED TARGET

point A. In order to specify the required velocity at A , an additional
guldance constraint must be imposed. This should be obvious since it pre-
viously has been shown that only two degrees of freedom are required to
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control impact and VR naturally has three components. For example, it is
possible to hold the total time of flight from launch constant. Thia has
the effect of making an earth fixed target stand still, vhich sometimes has
certain advantages from a computational standpoint. PFor this set of con-
straints, the missile vill reach the target vith an arbitrary velocity which
depends on the particular burnout conditions. Some of the other possible
constraints are

1) Burnout velocity magnitude .

2) Burnout velocity elevation angle \

3) Any component of burnout velocity

4) Burnout energy

5) Burnout angulyr momentum magnitude

6) Velocity magnitude at the target

7) Velocity elevation angle at the target

B8) Any comporent of velocity a. the target

9) Time of free flight.

Some Examples - It is not necessary to include all three target position
coordinates as conatraints. For one satellite launch problem it wvas found
desirsble to use the following constraint:

l) x = Xn

2) z - ‘-r e

3 ¥ Yy

4) constant total time of flight.
Here trf ’ iT ’ iT , and Jp ore all allowed to vary. In the case of satellites
vhich have a number of thrusi periods separated by coast periods, it is usually
desirable to use different sets of constraints during the various guidance periods.

The generality of the required velocity concept is illustrated by the fact that
the simple case of steering & vehicle to & particular velocity at burnout is
included. Here the constraints are

1) x = *en
2) ¥ = ¥
)RR
'l&) tep= O
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In this case, the target position vhich reduces to the burnout position will vary
depending on the propulsion system, wvinds, etc.

The above examples have illustrated that all essential guidance information is
included in the specification of the required velocity vector. If the missile
is steered in both pitch and yaw, it 1s theoretically capable of achieving
exactly the rgggi:gg‘yelocity vhen thrust is terminated, and hence capable of
satisfying the four guidance constraints. Since satisfying four constraints,
actually means causing three of the constraints to occur simultaneously with
the natural occurance of the fourth, it is reasonable that this degree of per-
formance should be attainable wvith the three degree of control available in
most rocket vehicles, i.e., pitch steering, yav steering, and thrust termination.
As wns pointed out in an earlier paragraph, it is possible to satisfy all seven
constraints if the rocket engine is throttleable,

Another Approach - Since only threc constraints arc actually required to

vcluae a ballistic missile to impact at a target, it is sometimes convenient to

vork in terms of a two component (x and y) required velocity vector. 1In this

case t is allowved to be arbitrary and VR becomes a function of z as well

as position and time. Hence

Vo = Va(Ri ¢, 2) (30)

Since & is arbitrary pitch steering is not required for guidance purposes,
it may be used to satisfy antenna look angle constraints or may be eliminated
altogether in the interest of simplicity.

Some of the presently used methods for computing required velocity are described
in Section 3.

2.3 Thae Control Function

\

The basic function of the control portion of a rocket guidance system is to
stcer the vehicle in a way that will cause the actual velocity to become equal
to the required velocity. Wwhen this occurs thrust is terminated and the

e =T

*The work of D. MacPherson nt Space Technology laboratories has shown that it ig
often rossidle to satisfy more than f{our constraints, by steering in n particular

wvay. His work is not covered here.
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guidance systems plays no further roll unless there are additional guided phases.
Since the steering loops are feedback systems, it is convenient to define an
error signal, the most commonly used one being given by the expression

v =« ¥, -V (31)

vhere V 18 equal to R , and wvhere ?g is called the velocity-to-be-gained
or alternatively the velocity-to-go. It is the function of the steering loop
to drive ?8 to zero; the steering loop is actually a velocity control system’
with VR as the commanded input.

The Steering Loops - A block diagram of a high quality inertial guidance
syctem for rocket vehicles is shown in Figure 7. As can be seen, both the
navigation loop and the guidance equations are integral parts of the ateerigg
loop. The velocity control law (or function) must be chosen so that some time
will alwvays exist wvhere all components of ?8 are equal to zero. Since the
system is non-linear and time-varying, the development of the proper function
is not a simple task. While ballistic guidance systems are usually thought of
as velocity control systems, as stated above, an outer loop does exist. The
predicted values of the three or four target variables of interest are con-
stantly being compared with their specified values. This is, of course, done
implictdly by the guidance equations. The result of the comparison is the
cormand signal for the velocity loop. In practice VR changes much slower
than V , 80 for stability studies, the former can be treated as a forcing
function.

As wvas pointed out in Section 1.2, the relatively fragile nature of long

range rocket vehicles, usually requires that the steering be divided into

tvo phases: (1) an atmospheric phase and (2) a vacuum phese. During the

first phase, vhich corresponds to the region where aerddynamic effects are
apprecisble and where the nominal trajectory is a gero lift, or gravity, turn,
only a rather “"gentle"” type of steering can be tolerated. Any violent maneuver-
ing will result in excessive structural losds vhich may cause the vehicles des-
truction.

*The term control system is frequently taken to mean attitude control system.
In this chapter, “control” has a more general meaning. When attitude control
is meant, it will be so specified.
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Steering Signals - The net result of the "gentle” steering requirement is
that Vg is usually not an acceptable steering signal during phase 1, because
of the violent maneuvering which it can cause. The two arproaches which have
been used most sucéesafully to date are

(1) Programming pitch and ysw attitude as functions of time.
(2) Steering the missile on some moderately well behaved function
\ such as one vhich commands”a given velocity profile, e.g.
null ¥ with ysw coctrol and command a functional relationship

betwveen x and 2z with pitch control.
Any scheme used during the atmospheric phase besides being "gentle" should keep
the vehicle as close as possible to the nominal trajectory, even in the phase
ot perturbations, so that the required region of guldance equation validity

is minimized.

During the second or vacuum steering phase, yav attitude or attitude rate is
commanded with some function of ?8 . Pitch attitude or attitude rate may be
commanded as in the atmospheric phase or by some function of ?8 » depending

on the number of guidance constraints to be satisfied. . In any case, thrust is
terminated vhen Vg ﬂfgnggpq,zero or nearly so. The steering problem, including
a number of presently used approaches, is discuased more completely in Section k.
Regardless of the system used, excessive maneuvering should be avoided, cince

it is inefficient from a fuel standpoint.

This section has described a general type of rocket vehicle inertial guidance
system. It was thown that the scheme has three main functioms: (1) Navigation,
(2) Computation, and (3) Control. Such systems can theoretically achieve almost
arbitrary sccurscy, limited only by the capacity of the airborne computer. 1In
practice, of course, component errors place a limit on the achievable performance.

P
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4

3.0 GUIDANCE EQUATIONS

Given the time, and the position and velocity of a vehicle, a guidance system
must be capable of generating signals vhich are a measure of the vehicles present
arility to accomplish its intended mission. These signals are in turn used to
modiiy the flight path and to terminate thrust in a way vhich guarantees that

all guidance constraints will be satisfied. The generation of these error or
status signals, vhich wvas referred to as the computation function in Section 2,
is accomplished through the use of guidance equations. Two of the more common
types of guidance equations are discussed in this Section; both are based on the
required-velocity concept.

In general the closed-form computatiou of required velocity for the case of a
rotating, obi;gzﬂz:;th with atmosphere is not possible. Approximate calculations
of more than adequate accuracy can be sccoupliuhed; however, in a number of ways,
tvo of the more useful ones being

1) Explicit Quidance Equations

2) Delta Quidance Equations
From a practical standpoint, the methods differ in two important respects:
(1) complexity of the in-flight computations and (2) amount of targeting or
pre-computation required. Basically one can be traded for the other. Explicit
equations are rather complicated from a mechanization standpoint, but require
& minimum of pre-computation. For delta, essentially the reverse i{s true.
The selection for any actual system will depend mainly on the relative importance
of these two points.

3.1 Explicit Guidance Equations

The mort straight forwvard approsch to the guidance of a bszllistic vehicle is
to work directly with the free flight equations of motion. FPor purposes of
1{llustration consider again the caae of a missile traveling in a vacuum under
the influence of a constant gravity field (usually called a "flat earth"). The




STL/TN-60-0000~-GR186

Page 25
squations of motion as previously given in Section 1 are
= ; 2
x x + xotrf (32)
1 = 2 +2t,,-1/2¢g t2 (33)
o o ff 1 94

vhere x 1is downrange, z is up, and g 18 equal to 32.2 fpsz. The geometry
{s showvn in Pigure 8. Motions out of the trajectory plane are not considered

for the present.

’VR(xo » T to)
Xy Zyo T
v ——— —— > x
Figure 8 - FLAT EBARTH EXPLICIT GUIDANCE EXAMPLE
If the total time of flight is constrained to be equal to T then the x
and 2z components of the required velocity, GR , are given by
X =-Xx
t e}
e " TTE, (3v)
o
z, -2
t o
Var " F 5 1/2 g(T - t) (35)
vhere
tee = T -t (36)

If the nissile is steered in pitch so that v: 1s equal to sz and 1if

the thrust is terminated vhna—~¥;'.1s equal to va , then the migsile will
pass through point (xt ’ zt) at time T .
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If impact time is of no interest as is sometimes the case, the tir of free

flight, tys » can be found from (33) as a function of z and ? as given by
[2 R
. ] B+ 2 - Zg(zt - zo) (37
29 g

Substituting the expression for tey (37), back into (32) giver the expression

for VRx

v - g(x, - x)) (38)
Rx z+ -\/iz - Zg(zt - zo)

The computation of va is more complicated than in the constant -ime of flight
case, but the need for pitch steering has been eliminated, and it .s now only
necessary to cut-off the engine vhen Vx is equal to va . For either of these
simple systems, vhich actually approximate the case of a short rar-e missile,
. lateral motions can be handled by constraining the missile to fly !n the lsunch-
target plane, i.e., by nulling y and ¥y by means of yav steerir-. The case of
a moving (but not accelerating) target is easily handled by the ur of a target-
fixed coordinate system. If the target is sccelerated, but in a ¥howvn wvay, the
problem can still be solved, but the equations are more complex.

\‘.

The Spherical Earth Case - The more important and considerab’ more com-
pPli-ated case of a missile traveling about a spherical carth will -ow be investi-
gated. The effects of earth's oblateness and tﬁe re-entry atmospt-re (in the
case of a ballfstic missile) are relatively small effects, which - .n be handled
separately, and vhich vwill be discussed later. If the trajectory .s again con-
sidered planar, the Lagrangian function for the missile in free f:: ght is equal

to

n,.2 2,2 M m
L-E(r ¢ré)+——x—_—— , (39)
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1

vhere r and 6 are earth centered inertial (ECI) coordinates. From (39)

the equations of motion are found to be

£ -’ s F a0 (40)
r
. \
& (%) - 0 | (b1)

Equation (41) may be integrated directly to give

—— —

. Cl
0 = > (hZ)
r
If the variable p = r is introduced, them
r = 92 = 2 22 = 52
T = 3t " &®ar - Par (43)
Substituting (42) and (43) into (4O) gives
CZ
dp M
P - + = 0 (Lb)
e s
- ‘/w’,'
vhich can be integrated so that
2
2 C
B 1. ™
2 + ;2' T CZ (hS)

2
p-\/204?2ﬂ-§% (h6)

But since

(u7)

o
»
e
»
I
]
I
'tNl,_n
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‘equaticn (L6) becomes
o (18)
\/2C2r 20M r
r > 3 1l
Cl C1
vhose integral is
] c,”
-1 } 1 - aﬁl:
8 - eo = sin { e —ég;ﬂ’ (l&9)
» 2C,°C
o 1 72
v + 2
L (am)

Since 60 is arbitrary it can be set equal to zero. The equation can then
be re-written so that ' '

r = 1 (50)

2Cl C2

(aM)®

aM(l - V1 + sin 6)

This, hovever, is identical in form to the equation for an ellipse with one
focus at the origin

2

231 -e 2
F ®* T - e sino (51)

vhere a is the semi-major axis and e 1s the accentricity. By equating
similar coefficients in (50) and (51), the constants of integration are related
to the elliptical constants as follovs:

| c] — VM af1 - ) {52)

I | (53)




| Therefore using (42) and (53), equation (45) can be reduced to

i'z + (ér:)2 - Vz - 04(;2: - é) (58)

This is the 8o called "vis viva" integral of celestial mechanics' vhich
simply showa that the speed of a body in orbit depends only on its distance
from the center of force. It nov becomes a problem in analytic geometry to
derive an expression for the velocity required to hit a desired impact point,
since (54) clearly shows it is necessary to have only the semi-major axis of\
the free flight ellipse joining vehicle and target.

The Required Velocity Expression - In order to derive the oxpression for
the gemi-major axis of the-ellipse, it is necessary to use the following two
properties of an ellipse: |

(1) The sum of the distances from any point on the ellipse to the two

foci is equal to the major axis of the ellipse.

(2) A line normal to an ellipse bisects the angle between the two lines

to the foci.
The geometry of the situation is shown in Pigure 9, vhere r and ;t are the
missile and target vectors, ¢ 1is the range angle, and y 1is the angle of
wvith respect to the local vertical. From the figure it can be seen that

R
X2 + yz - (2 - £ )% _ (55)
/ y = r+ (20 - r)cos2y - r,cose (56)
x = (2a - r) sin2r - r sine (s7)

*3im{1ar derivations of the "vis viva" integral can be found in almost any
book on classical mechanics, e.g., McCuskey, S. W., "An Introduction to Advanced

Dynamics', Addison-Wesley, 1959.
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Free Flight
Trajectory

Focus t
(Farth Center)

Pigure 9 - GEOMETRY OF SEMI-MAJOR AXIS CALCULATION

selving (55), (56), and (57) for a gives

rt(l - cos o) .
J \ (58)

r
a =3 [l tre T, - T cosly + T, cos{2y - ¢)

This thea 1s the semi-major axis of an ellipse wvhich contains the missile and
the target and is tangent ¢{o the required velocity vector.

I
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Substitution of (58) into (S4), the "vis viva" integral, gives
V: - ZSM - l - cos ¢ (59)
;—(1 - eo82y) - cose + cos(2y - o)
t

vhich is an expression for the required velocity in terms of the missile and
target diastances from the center of the earth, the range nngle; and the velocity
vector angle. 1t may be computationally convenient to mechanize (59) as a vec-
tor equation, replacing cosines with dot products. Thrust termination can be
commanded according to either of two criteria

2
(YE -1 | i (60)
Vv .
Ve -V = 0 | (61)
vhere V. and V are both-scaiar quantities. Equation (60) has some advantages

R
since it tends to be lipear in the region of cutoff.

Effect of Earth's Rotation - Thus for an equation, (59), has been derived
vhich gives the velocity required to hit a particular point in inertial space.
Most targets, however, are not fixed in inertial space, they are usually either
in orbits of their own, or they are fixed to the earth and rotate with {t. In
particular the ECI rectangular coordinates of an earth fixed target at some

future time are given by

X, = T, conlge,gggcst + o, Typ) (62)
Y, = T, cos 8, ain(ot + o, Tff) (63)
t, = r, sin6, (64)

vhere et and .t are the latitude and reference longitude of the target and

vhere @, is earth's rate and Tft is the time of free flight.
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The above equations clearly show that in order to predict the position of the
target at impact, the time of free flight must be known. The time of free
flight, however, depends on VR vhich in turn is a function of the impact
position. Hence, an iterative procedure results as follows:

1) A future target position is assumed.

2) The corresponding required velocity is computed.

3) The elements of the resulting eliipse are computed.

L) The time of flight is computed.

5) A new future target pcsition is computed.

6) The procsdure is repeated.
Because the earth moves rather slovly (1000 fps at §5° latitude), the time of
flight calculation is not very critical and the iteration can be carried out on

& cycle by cycle basis. This is not necessarily the case for targets in general.

The derivation of the expression for time of flight begins with the "vis viva"
integral, equation (54), vhich is equal to

vV P 0)? . aE L) (65)

Previously it was shown, (42) and (52), that the angular momentum of an orbit
is constant and i3 given by

%6 = ¢, = Vara(l- e (66)

8quaring (66) and combining the result with {65) gives

2
2, Ma(l-ef

) (67)

Qi+

4
= CM(= -
r? r

, ;
Multiplying through by r“/a and rearranging leads to
ri 2 [ 2 r.2
) o oae? -1 -5 (68)

a |

(%
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It is now convenient to introduce another frequently used orbital parameter - E ,
the eccentric anomaly. The geometry which .defines the angle is showvn in Figure 10.

Pigure 10 - ORBITAL GEOMETRY SHOWING MEAN ANCMALY ANGLE

Concentric circles of radius a and b are drawvn. If a radius vector 1s
drawvn at angle E with respect to the x axis, and 1f parallels to the x
and y axis are drawn through the points vhere the radius vector intersects
the small and large circles, then the inter-section of the tvo parallels will
be a point on an ellipse. The eccentric anomaly is a wvay of designating a
particular point on the ellipse just as isa o0 .

From the geouatry of Flgure-10; it is easily shcwn that

r = a(l - e cost) (69)
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or that
e cosE = 1 - g (70)
Therefore (68) becomes, after taking a square root,
I« JoM e sinE (11)
Ja
Multiplying (69) by its time derivative gives
Ir = aa e sinE(l - e cosE) E (72)
vhich can be combined with (71) to give
N 0'3/2 = E (1 - e cosE) . (73)

thch in turn can be integrated directly to give Keplers equation
Q/Z(E -esinE) = JaMt + C (T4)

vhere C 1is the constant of integration. The time of flight io the target
follows directly from (74) and is given by

tee = ()" /2 32(x - k) - e(sinE, - sinE)] (75)

e

e

vhere E and Et are the eccentric anomolies of the missile and target
respectively. Since all terms of (75) are easily computed from orbital
relationships, the ipertial position of the target can be obtained.

Other Effects - The scheme described here is designed to hit a target

moving in a known manner, such as a point on the earth or a zatellite. It
does not require control of radial velocity, i.e., the pitch attitude program
can be arbitrary. If a more genersl guidance problem such as the placing of
a satellite in ordbit is to be solved, then radial velocity must be controlled

and the equations become more complicated.
"
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Thus far no mention has been made of ways to compensate for re-entry snd oblate-
ness effects, nor have ways to handle motions out of the orbital plane been con-
sidered. The first two effects, it turns out, are relatively small and can
usually be handled by tabulated target offsets wvhich are functions of range,
azimuth, latitude, etc. The last efrect is more complicated in that some uteering
is necessary. Rasically 1l that is required is that the vehicle have no velocity
normal to the plane containing the vehicle, the target at the time of impact, and
the center of the earth. The normal velocity is given by

vV, = (rx ;t) . v (76)
which can be used as the error signal for yaw steering and is analogous to ng

3.2 Delta Guidance Equations

Until very recently, the complexity of explicit equations made them very unattrac-
tive for use in inertial guidance systems. Airborne computers of reasonable size
sixply were not fast enough to solve the equations in real time, e.g., once or
tvice per second. It was therefore necessary to find other ways to handle the

prodblem. —_—

3ince, as has already been stated, vehicle perturbations are relatively small
(in the neighborhood of a few percent) it was only reasonable to think in terms
of guidance equations which are power series expansions about a nominal trajectory.

General Development - A pover or Taylor series in one variable is of the form

£(x) = f(a) + I%L%l (x - a) + 2%1;1 (x - 3)2 YO (77

vhere x 1is the variable and e 1is the point about vhich the expansion occurs.
For a function of tvo variables, f£(x , y) , the series is of the forl'

t(x,y) = f(s,b) + [(x--) 3% + (y-b) %J f(x,yi
, ' »

2
+ -21——,- [(x-a) Sa-i + (y-b) S%J (x,y) YO (78)

a,b

%See any advanced calculus book, e.g., C. R. Wylie, "Advnncedyﬁnginrering Mathematics,”
PP 598-604, McGraw-Hill, 195).
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P g :
vhere x and y are the variables and a,b 1s the point about vhich the series
is expanded. The similarity to the one variable case is unmistakable. The ex-
tension to three or more variables is equally clear.

As has been shown previous, iR has either two or three components depending on
the pumber of guidance constraints to be satisfied. In the more general three
component case, each component is a function of four variables - x, y, z, and t.

They are, of course, implicit functions of the guidance constraints themselves also.

If expansions are to be found, then an expansion point must be selected. The first
approach might be to select points a'l along the nominal trajectory and to program
them as a function of time. Coefficients would have to be determined correspond-
ing to each expansion point and the three expansions (VRx ’ vRy’ and sz) would
be time varying. If the number of expansion points used was very large, the air-
bbrne computer storsge requirements could easily become excessive.

A little reflection onthe problem, howvever, soon leads one to the conclusion
that the expansions need to be highly accurate only in the irmediate vicinity
of burnout. Hence, only a single point and a single set of expansions need be
used, at least for any one guidance phase. Since the nominal burnout point
(xo AR N to) is usually coasidered to be the most likely burnout point,
(or vector) it is usually selected as the expansion point. Three expansions

similar to the folloving V expression therefore result:

Rx
o . 2
va - x4+ kxxAx + kxydv + kszz + kxtAt + kxxxa“
+ k___AxAy + k Ayz YO ’ (79)
oy Yy

——

vhere Ax = (x-xo), Ay = (y—yo), etc., the delta quantities, of course, giving
the equations their name. The coefficients, kxx ’ kxy y etc., are basically
partial derivatives and are defined by the corresponding terms in (78). Usually
linear and some second order terms are required depending on the probable size
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"of the "burnmout box" and the accuracy required. The number of terms required

]
will depend also on the miss coefficients in.the direction of the expansions
validity.

A Flat EBarth Example - In order to illustrate the working of delta equa-
tions, a flat-earth, two-dimensicnal case vill sagain be considered. The nominal
trajectory parameters are those of the V-2 missile from Section 1 and are as

listed in Table 3. v _ \

Table 3 - V-2 TRAJECTORY PARAMETERS

Parsmeter | Symbol } Value
Horizontal BO Position x, 85,000 feet
Vertical BO Position z, 123,700 feet
Horizontal PRO Velocity ‘o 3,500 fps
Vertical BO Velocity io 4,800 fps
Time at BO to T0 seconds
Horizontal Target Position xt 1,212,000 feet
Vertical Target Position % O feet
Time at Impact T 392 seconds

e -
The constant time of flight constraint will be employed (T = 392) and both
linear and quadratic terms will be used. The coefficients can be obtained by
performing the appropriate partial differentiations on the explicit expressions
for Vp  and Vo, (34) end (35). The coefficients are summarized in
Table 4. It can be seen that vhile there are 18 possible linear and quadratic
termr in the two expansions, only 8 are non-zero fu: the flat-earth, constant-
time-of-flight case. The biggest reduction is due to the absence of cross

coupling between the x and 2z channels.




Table 4 - LINPAR AND QUADRATIC DELTA COEFFICIERTS FOR V-2 TRAJECTORY
(Constant Time of Flight)
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Using the V-2 parameters, the va and VRz expansiqns becone
Vo, = 3500 - 3.1x 1073(x - 85,000) + 10.9 (¢ - 70) (80)
- 9.6 x 10‘6(x - 85,000)(t - 70) +« 3.4 x 10™" (t - 70)2
Vo, = 1800 - 3.1x 1073 (2 - 123,700) - 17.3 (t - 79) (81)
- 9.6 x 10'6 (z - 123,700)(t - 70) - 3.7 x 10‘7 (v - 70)2

Within the airborme computer, it is usually convenient to group the terms some-
wvhat differently, lumping the constants all into a single term.

In order to give some idea of the accuracy of the equations as well as the
relative importance of the various terms, the equations have been evaluated

for three sets of periﬁrbntiona, one of vhich corresponds to the launch point.
Thr results are summarized in Table 5. The launch point, of course, is not

an expected burnout point and is only included for the purpose of placing

som~ sort of an upper bound on equation error. For the other randomly selected
perturbations (vhich are abnormally large by any standards), the equations per-
form quite vell. Even with linear terms alone the V-2 impact error would be
wvell under a half mile {f the missile were t0 burn out at these points. The
example also graphically illustrates the relative importance of linear and

high2r order terms.

The More General Ciigbtnﬁﬁile the flat-earth example illustrates very
well the functioning of delta equations, it gives a somevhat over-simplified
picture of the effort that must go into obtaining the coefficients - a job
usually known as "targeting”. For the flat-earth case, simple formulas are
available for the required velocity and the partial derivatives are rather
quickly obtained. The ﬁR formulas themselves are simple enough to pro-
bably obviate delta equatioms.

*To the wvriter's knovledge, the first successful application of delta guidance
equations to long range rockets was a result of the joint efforts of J. Caroll
of American Bosch Arma Corporation and F. Baskin and T. W. Layton of Space
Technolosy Laboratories.
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Table 5
BERAVIOR OF DELTA GUTDANCE EQUATIONS FOR V-2 TRAJECTORY
(ALL VELOCITIES IN FPS; CALCULATIONS TO NEAREST 1 FPS)
| Launch i
| Ax = 20,000 ft | Ax = - 10,000 £t | Ax = - 85,000 £t |
! o2 = 30,000 £t | Az = - 15,000 ft Azu-laa,“foort{
: e - Ot = - 10 sec | At = + 10 sec ot = - 70 sec :
! i
Yex © "Rt | "Rx VRe Vax VRe |
| ! B
Constant Term 3500 | LBOO | 3500 | LBOO 3500 L800
bx " -62 1 o 1 31 0 263 o
be " o i-93 , o0 w N 83
ot " -109 173 i 109 -173 -763 1211
axat " 2 o | 1 0 - 57 0
bzit " 0 3 0 1 0 |- 83
(o0)2 3 0 3 0 166 | - 18
VR (Lineai Terms). 3329 1380 3640 L6Th 3000 6394
Vo (L and Q Terms) 3334 I‘ 1883 36kk L6 3109 6293
7 (From Pormula) 3333 4882 | 36Mk | L6T5 3092 6311
Brror (Linear) - L e 2 -4 . 1 .- 92 83 "
—
Error (L and Q) E+1 + 1 0 0 + 17 -18
+— . {
Impact Miles ' 0.10 0 0.62
Error for v — -
L and Q Seconds ; 0.06 0 -1.1 !
Delta | , , ,
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wWhen a rotating, oblate earth with re-entry atmosphere is considered, the picture
changes. While explicit equations for a spherical earth without atmosphere are
presented in Section 3.1, it should be pointed out that even these approximate
equations are iterstive in nature and can not be readlly differentiated in order
to obtain delta ccefficients. The proceiure which has evolved to generate delta
conatants basically consists of the following two steps:

(1) The required velocity (VRX , VRY , and VR
large number of x , y , = , and t perturbations is found by using
iterative procedures on a digital computer free flight simulation. The
simulation is a very precise model of a rotating, oblate earth with at-
nosphere. The points are selected in a way wvhich makes them correspond
as closely as possible to actual, realizable powered flight burnout
points. The VR will, of course, be a function of the constraints

z) corresponding to each of a

used.
(2) The empirically generated ?R
are used to generate the delta coefficients by means of least square

data and the corresponding perturbations

fitting procedures.
The procedure for generating each of the three expansions is the same sa the one
for VRx wvhich is summarized by —

N n 2
T J\ xxJAJ(pgk), ceee pﬁk)) - Avm(p(k), i, pf‘k)}_.um (82)

1
SREE!

where
N = number of data points
ng):---~:Ph = OX, Ay, O, and At from the kth data point.
A) = functious of (pl,...., ph) like &x, &y, &xdy, etc.

coefficients of Aj in the V expansion

Ky Rx

n = number of delta terms in AV

e

R

The functions, 4A) , and the number of terms, n , are chosen to obtain the
required degree of accuracy. It usually turnms cut that n 1is somevhat less for
v and V than it {s for V + The actual differences depend mainly on

Ry Rz Rx
the ~oordinate system and the constraints employed.
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The lipear ﬁR coeftffients can also be obtained‘from the linear target miss
expansions. Since these expansions are more easily obtained (no free flight
iterations are required), the procedure is sometimes used when only the lipear
coefficients are required or vhen it is desirable to simplify the fitting pro-
cess. Consider for simplicity the two dimensional case. The linear mias

expansions are of the form

MM M M M
Mx = x&#g&#w&#&-&#wﬂt (83)
M, M M M M
M! = xAx+5?-Az¢g;-Ax+g;—Az+5-t—At (8!&)
i R T

vhere M‘ and Hz are the x and 2z deviations from RN at time
equal to T (or as any other third constraint is satisfied). If the misses,
M ) are set to zero, then the resulting two linear equations can be solved
simultaneously for Ax and Az . The resulting expansions in Ax , Ar , and
Ot will be identically the same as the linear va and VRz expansions. As
an example, the Ax coefficient in the va expansion is

Mz be BHx BMZ\

OVpy JA9x_ 9% " ax 6:4) (85)
3 ('au _OM_ oM_oM_ 2

ok o ok oz

The results are similar in the three-dimensional case, except that numerator

and denominator contain six triple products, rather than two double products.
Numerically, the computaticns are trivial in either case.

Summary - Explicit and delta guidance equations have been described and
examples of each have been given. While these are not the only guidance equa-
tions currently being used, they do typify the two larger classes into vhich
all guidance equations might be grouped, namely total equations and perturbdba-
tion equations. Total equations require less pre-computation and will work
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ror.larger vehicle and environmental perturbations. Perturbation equatioans,
howéver, are simpler to mechanize and are inherently more flexible, since all
guidance constraints can be changed simply by changing the constants. As has
been stated previously the choice will depend mainly on ope;ational requirements.

Frequently it reduces almost to a matter of personal choice.
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L.0 VEBICLE STEERING |

In the previous section, it was shown that methods exist for continuously
computing the required velocity for a rocket in flight. The third and final
function of the guldance system, as described in Section 2, is the control
function, i.e., the vehicle's flight path must be directed in a way which will
cause all three comporents of the velocity-to-be-gained (Vg = VR - V) to resch
zero sirmltaneously. For reasons developed in Section 2.3, the steering is
usually broken down into atmospheric and vacuum phases. In this section, the
steering problem is discusscd in some detail and a few of the currently used

methods for each phase are described.

L.1 The Atmospheric Phase

During the atmospheric phase, the steering of a rocket vehicle 1s basically
"open loop", iT;TjWZEE is not used explicity to comntrol the flight path.
Instead some less violent variable such as attitude or velocity is used to
maneuver the vehicle in a way wvhich will keep it as close as possible to the
nominal trajectory without causing excessive structural loading.

The starting point for most atmospheric steering schemes is the cpen loop or
reference trajectory, usually a "kick"” trajectory. This non-physical trajectory
is generated on a digital computer by causing the missile to rise vertically for
some period of time, at the end of which the vehicle's attitude and veloclity
vector are instantaneously rotated downward by an amount known as the "kick"
angle. From this pbint on until the missile is essentially out of the atmosphere,
the thrust vector is caused to be directed along the velocity vector and the
missile flies a gravity turn. Beyond the atmoaphere some arbitrary attitude

prograu, usually a constant angle, is flown.

Since the velocity vector of a physical rocket c¢.nnot be instantaneously
"kicked"”, the transition from vertical rise to gravity turn actually takes place
over a period of time known as the transition turn, the length of which is
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measured in tens of seconds. An angle of attack must of necessity exist during
this period, but fortunately this occurs before the dynamic pressure has not
had time to build up.

The simplest approach to steering in the atmosphere is to program vehicle
attitude or attitude rate as a function of time. Yaw attitude is held to zero,
and pitch attitude is commanded as it occurs on the "kick" trajectory. The
"kick" angle is actually caused to occur slowly over a period of a few seconds.
A typical pitch rate program is shown in Figure 11. The program, vhich in this
case changss in steps can be generated mechanically or electronically. The

1 . 2
/ Transition Turn
. .8
8
c /Gravity Turn
(deg/sec) " -—L -
“-v_l /- Constant Attitude |
0 100 200 300

_— T Time in Seconds

Figure 11 - TYPICAL PITCH RATE PROGRAM

corresponding pitch attitude program could also be used. In that case a more
continuous program is required, since attitude is commanded directly, without

the smoothing effect of an integration.
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Velocity Steering - Somewhat better performance is obtained by steering
the missile on velocity. The velocity may or may not include integrated gravita-
tional acceleration. Congider first the case of thrust velocity alone, i.e.,

the integrated output of accelerometers. The coordinate system is shown {n

Pigure 12 vhere x y ¢ (down range, left, and up) is a launch fixed inertial

coordinate system. If the z axis is rotated counter-clockwise by an angle A ,
\ .

T
b

Figure 12 - COORDINATE SYSTEM PCR THRUST VELOCITY STEERING

the u eaxis is obtained. The integrated outmut of an accelerometer mounted
along u will differ from u at any instant of time by the initial value

of u and the integrated gravity term. If A is equal to 90° minus the
constant attitude angle, it can be shown that for typical open loop trajectories
the actual integrated accelerometer output', ﬁ‘ s ¥ill have a time history

of the form shown in Figure 13.

#jActually, of course, ua may be the cutputs of two or more accelerometers
suitably combined.
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— -
t
Figure 13 - INTEGRATED ACCELERCMETER OUTPUT FOR TYPICAL TRAJECTORY
The shape of the curve suggests an exponential approxisation of the form
-t
o .l T -
a, = G (L ~-e 'p) (86)

If the vehicle can be caused to fly such that (86) is realized, then a gravity
turn will result. This can be accamplished by commanding a pitch rate

8, = - Kp['rpua + 0, - uf] (87)

It éc/l(p is small, then (86) is an exact solution of (87). If it is desirable

to command attitude rather than rate then (87) can be integrated and the command

becomes

o, = - xp[rpu‘ +u - uts c) (68)
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It may be necessary to fit the ﬁa(t) vs t curve with two or more exponentials
and to change constants at some convenient point such as a staging point. This

is especially true if this type of steering is to be used over the entire flight
rather than for the vacuum phase o. ly. Volocity steering in yaw is accomplished

by an attitude command of the form

Vo = K v I, Y] (89)
Here there is no forcing function and the yaw steering loop is aétually a nulling
loop.

A somevhat more general pitch velocity steering acheme consisis of controlling

the flight path of the vehicle so that

Vz - rl(vx )y X, 2 ,t) (90)

Again a variety of coordinate systems with and without gravity may be employed.
An earth fixed coordinate system works particularly well, since the earth's
atmosphere rotates with the earth and therefore is at rest with respect to the
coordinate system. The steering necessary to realize (90) can be accomplished ty

attitude perturbations given by
8o, ar‘f'x;[vz - fl(Vx y X, 2, t)] (91)
vhere be/Kp is a small number. At the same time the nominal pitch program can

be written as a function of one or more variables, e.g.

enc = fz(vx »y X, 2, t) (92)

Combining (91) and (92) to get the total pitch attitude angle command gives

o, = O +80 = f3(vx »V, s X 52, t) (93)
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In practice {t is frequently found that the x , z , and t terms are not very
effective and an expansion in Vx and Vz may be all that is necessary, e.g.
2

= b
ec szz *-Ex!x?:;xkxvx (94)

The coefficiens ere obtained by selecting a number of points from the standard
trajectory and using least square fitting procedures as was done for delta guidance
constants. The difference here is that it is not necessary to use points from

perturbed trajectories.

Velocity steering as typified by (88) and (94), although more complicated, has

at least two advantages vhen compared with attitude-time programming. First the
micsile angle of attack due to a wind snear is reduced somevhat. This 18 du= to
the fact that the dynamic action of the loop causes the vehicle to "weathercock”
into the wind. The second and primary advantage is that the trajectory perturba-
tions due to vehicle perturbations are greatly reduced. When any type of pertur-
bation guidance equations, e.g. delta, are used, this fact results in a reduction
in the complexity.of the equations and hence a simpler computer mechanization.

On the debit side is the fact that this type of steering tends to "work" the
attitude control system harder and as a result stability margins at vibration
frequencies may be slightly reduced.

4.2 The Vacuum Fhase

Once the vehicle is out of the atmosphere, structural constraints can be relaxed
and the steering system can begin to perform its primary function, t.at of re-
ducing Vg to zero. A steering or computational cocrdinate system is usually
selected which aligns the x axis more or less witl the desired thrust directiom
during the latter portion of powered fllshi: The signal V‘x then repreoehta
the principal component of velocity-to-de-gained and V‘y and VG! are con-
siderably smmaller. ;

*The coordinate system used in Section 3 had the t aexis aligned wvith launch
vertical for purposes of simplicity. If pitch steering is done, it is usually
necessary to tip the coordinate system.
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One method which will cause the y and 2 components of ?8 +0 vanish at
cutoff is to drive these quantities continuously toward zero from the "initiation

of guidance"’. This can be accomplished by ipterpreting ng and ng as error
signals vhich are to be nulled by suitable attitude or attituds rate commands to
the autcpilot or attitude control system. Stability considerations usually re-
quire that some type or rate information also be included for damping purposes.

A typical pitch attitude cormand would be of the form

6, = 6, + Klvgz $ Koy (95)

vhere eo ia the nominal pitch angle. If a rate attitude command is to be used
it would be of the form
®w =KV T+ KV 6
5 KV * KV (96)
Thc'ynv commands would be the same only, of course, Vsz would be replaced by
v + In order to reduce certain steady state errors it is often desirable to

iaclude also an integral term in the steering expressions.

An Important Modification - While a scheme as outlined above is capable of
driving ?8 to zero at cutoff, it has one basic shortcoming. Even though tke
Y and t components of VS are small compared to st at guidance initiation,
they are still sufficiently large to ceuse excessive pitch and yav commands and
hence 'qbntantinl-uaaeuvering of the vehicle. As a result even a nominal vehicle
is causei to deviate considerably from the reference trajectory and this is
objectionable for two reasons: (1) It results in a non-optimum use of propellants
and (2) It means that the required velocity computatisn must be accurate over a

larger regiom.

¥ nitiation of guldance” is a term often used to indicate the time at which
the vehicle steering is swvitched from the atmospheric phase to the vacuum phase.
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The reason for the occurance of the above maneuvering becomes clear when it 1is
realized that under reference conditions the y and 1 components of VB differ
substantially from gero prior to cutoff. Pigure li gives the general shape of the
three components for a typical long range rocket vehicle. The actual shapes will

Velocity

Figure 14 - GENERAL SHAPE OF *78 COMPONENTS
depend on the trajectory, coordinate system, and guidance constraints. The net
result of this finding is that not ng ard vg: ; but rathe» their deviations
from nominal should be used as steering error signals. If t4is i{s done non-
nominal missiles still "wander" to some extent, but not excessively so.

If the standard values of Vsy and Vg‘
arises as to the independent variable against which they should be programmed.
Time or veldcity might be used, but further consideration leads to ng as the

best choice. The pitch and yav error signals are then of the form

are to be programmed, the question

vs! - vn - f(Vgx) (97)
® _ | .
Vey " Vo " f(vgx) (98)
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vhere the function may be simply vgx multiplicd by a constant, but usually
includes higher order terms. The function vill be equal to zero at cutoff;
aence the error signale become equal to Vg! and ng at cutoff. This, of
cours=, is the dominant remson for using 781 as the programming variable.

Cross Product Steeringt - The steering inethod described in the preceeding
paragraphs depends on the exisiance of a staudard or reference trajectory. Fre-
quenily, especially vhen explicit guidance equations are used, the reference tra-
Jectory concept loses {ts meaning. It is then that more general steering nethods
must be employed. The best known ol these is cross product steering vhere the
vehicle 1s cgused to have an attitude rate proportional to 68 x 68

The fmiaiental Justification for the method begins with the definition of 93

VvV = ¥ -V (99)

¥ -V, -7 | (100)

SBince V 1s ﬁihiiiéfaccelerltion vhich during powered flight is due to thrust
and gravitational accelerations, (100) can be rewritten

Vg + aTE + (g - VR) = 0 (101)
. wvhere E is the unit vector in the direction of ;T s the thrust acceleration.

Let u be a unit vector elong ?R . Therzfore

V = vu )
g g (102)
md ) L e T

*This Section is tased mainly on work by J. M. Bachar, F. Baskin, and D. W.
Whitcombe of Space Technology Laboratories.
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Coambining (101) with (103) gives
(Vg\;1 + "lsﬁ) + a8 + (g - ‘;’n) = 0 (104)
Taking the dot product of (104) and u results in
V¢ ap(E8) + (8 - (73) cu} =0 (225)

since U.ueO and u.u=1 . If then the thrust is direct=d along tke Gg
direction, {i.e., E e’ﬁ , (105) is reduced to the scalar equation

\‘rs+.,r+[(§-én).a1-o (106)

AL

The necessary and sufficient condition for the monotonic decrease of Vg to
zero is that ig alwvays be negative. This indeed is the case as long as

(& - V) - G) < o ' (107)

vhich in turn is true for current high acceleration rocket vehicles. Hence it
has been shown that causing the thrust vector to be pointed along the 78
vector guarantees that 68 will be driven to zero, i.e., all three components.

What then does this attitude requirement imply with regard to vehicle attitude
rates? As was stated i{n (102)

v
3 = Vﬂ (108)
g
The time derivative of (108) is shown to be
u = —‘—‘;-}—5—‘ . (109)
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8ince u 18 a unit vector, it is true that
@ = uxu (110)
and hence
F vy vV ooV
D = £ x-28 . .8
w T 2 x _ﬂ_§ (111)
8 Vg 8 Vs

The second term is identically zero so the turning rate of the fs vector 1is

+

equal to
® = _E__Z_ﬁ , (112)

If the thrust vector is to be kept aligned with the ?é vector (f = u) ,
then the missile turning rate must be equal to (112).

An examination of (112) reveals that the 68 vector's turning rate becomes
infiuite at the instant of cutoff. Since no physical missile has this capability,
there vill alwvays be some steering error at cutoff with this approach. This situa-
tion appearc to be analogous to a pure pursuit course vhere infinite turning rates:
are also encountered at impact. In that case the situation is alliviated by modify-
ing the course to include a lead angle. In the case of steering a similar effect
\s achieved by pigq}pg_out the nominal error, since the error turns out to be
relatively independent of trajectory perturbatioms.

In practice the commanded vehicle turning rate is of the form
- K[V x ¥
@, K g * 8] (113)

vhere K may or may not be a function of Vg . The pitch and yav commmnded
rates vill be equal to

-KV_V ] ' (11k)

© = -V v
P .. 'gX 8 gt BX

- K[V V_ -V V
Cy KV ~ VeyVex! (115)
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The corresponding roll rate contains redundant information and is uot used. ‘An
equivalent system vhich commands angles rather than rates is possible, but will
| not be described.

| The cross product steering‘gfgfggﬂgnn'el the vehicle to fly a nearly constant

| attitude trajectory vhich is desirable from a fuel standpoint. At guidance
initiations, the system commands rather large rates until the proper attitude
is obtained and makes only small changes thereafter. The system does not attempt
to remove y or 1z components early, rather it attempts to drive all comporents

to gzero simultaneocusly.

4.3 Thrust Termination

It has been shown that it is possible to steer a rocket venicle in a way vhich
guarantees that all three components of the velocity-to-be-gained wvill reach
tero at the same ialtnnt,‘ifﬂﬁﬁiéi time thrust is terminated. 1If the steering

. system 18 perfect, i.e., all three components of i& become uriiquely geru,

then the magnitude of Vg or the magnitude of any component of ?‘ is useful
as a cutoff signal. 1In a practical system vhere steering errors will occur due
to both static and dynsmic effects, the signal is ususlly given when

Vex < K.q (116)

vhere Kco is some allowable tolerance on cutoff velocity. The st com-
ponent is chosen for a number of reasons:
(1) The coordinate system is usually chosen so that Iv‘xl is nearly equal
tolVg'-
(2) vsx is usually already available since it is necessary for steering
purposes.
(3) If either ng or V“ wvere used, small errors in the,e qu:nti?iea
could cause large cutoff errors, since usually V__ >V or V

&x &y g
Purther consideration of the cutoff problea depends on the type of engine employed.
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IS
Systes With Liquid Engines - Thrust is terminoted in a liquid propellant

cngine by closing valves in the fuel and oxidizer lines. Since the lines paat
the valves and the thrust charber itself contain a certain amount of the liquids,

thrust actually continues for a fraction of a second after valve closure, a
typical value being 0.2 seconds. If the accelerstion near burnout is 10 g's, and
a linear decay is assumed, 32 fps is added aftzr valve closure :orresponding to
32 miles miss in the case of a 550C mile miseile.

A knowvn residual impulse can. of course, be handi=dl hHy anti_ijating 1ts effect and
calling for thrust termination when vgx is still positive by the required amount.
The real difficulty comes from the fact that there is some uncertainty attached to
the residual impulse due to valve nperating times and other factors. A typicsl
number here might be 15% of the total residusl impulse, or 4.8 fps. Since velo-
city uncerf:inties of this size are not tolerable in a high quality guidance
syrtem, liquid engines are frequently equipped with vernier engines.

Vernier engines are small 1liquid or solid engines which are capable of accelerating
the vehicle at 0.1 - 0.2 g's. When &« vehicle is equipped with verniers, the main
engine is shut down with vgx positive by an amount which is larger than any

Ang vhich is expected from a residual impulse. The vernier i3 then ignited (if
a liquid 1t has probably been on with the main engine) and its thrust is terminated
wvhen Vgx is positive by an amounu which compensates for its anticipated residual
impulse. While the shut down procedure is the same for the small engine, the
difference lies in the fact that the velocity uncertainty is reduced by the ratio
of the thruatsyof the main and vernier ecginec. For the 0.1 g vérnier, this

means that the velocity, for the number chosen, would be reduced by a factor of

100 <o 0.0u8 fps, which would usually be called negligible. For medium accuracy
systems, the added;sggplexity of the vernier system often precludes its use.

——
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Cutoff Extrapolation ~ Even when a vernier msystem is usri, there s5till

remains the problem of generating the thrust termination <..nal with sufficlently

cmall time quantization. For many inertial guidance computers, position, velocity,

end velocity-to-be-gsined are corputed orce »*very one half sccond. In the case of

a 0.1 g vernier, the one quarter second uncertaintv could cause a 0.8 fps velocity

“error. Shuting down the main engine with a time uncertainty this large woula

2190 require the use of a vernier vith longer mean burning time. In order to

- reduce these effects, an extrapolation procedure is used. Consider for example

i
i
|
\

'a system where st is generated every one half second and where the extrapola-

tion {3 accomplished every one sixteenth of a second. Then

I ¢ S .
Vgx(mn) ” vm+l—-vgx_ (117)

o

vhere V is the value of V st a half second point and V is the
gxN gx gx(Nen)
value n/16 seconds later. Sufficient accuracy 1s usually obtained by using the

standard value of igx 80 the main engine is cutof{ when
V .+ < K (118)

and the vernier engine is cutoff when

< —

Yo * ™2 2 Kygeg™ (119)
vhere K, and K, are standard values of Vgxo/lG before maln engline and
vernier cutoff and Kmeco and xveco are computed to compensate for nominal
values of residual impulse plus an uncertainty in the case of the main engine.
In practice, the nominal vernicr period should be long enough to damp out any

slcering transients. Usually the reo ired length is in the 20-30 second region.
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Syetems With Solid ™ngines - Solid propellant engines differ from liquid
propellant engines in that combustion ocrurs in the full length of the engine
case, rather~then in the thrust chambsr only. Thrust is terminated in a solid
engine by blowing holes in the forward end of the case. This hes the effect

of reducing the thrust to zero in a very short perici of time. Even with large
engines, the residual impulse uncertainty can be reduced to the point where

verniers are not required.

Cutting off a high acceleration engine doss however i‘mpnse some rather stringent
requirements on the cutoff time granularity. For instance for a 10 g engine,
cutting off to + 1/32 second would result in a velocity uncertainty of 10 fps.
If the time granularity i5 decreased to a half millisecond, then the velocity
uncertainty is decreased to 0.16 fps. Therefore some form of extrapolation is
required, since the basic guidance computations are done at a mich slover rate.

Here it turns out that good results ure obtained when the engine is cutoff when

t
v = <
gx vgxo * J[ Srx dx < Kmeco (120)
.
o]
vhere vgxo is the value cf vpx at time to vhere the extrapolation mode is
begun and where Kmeco is a constant which compensates for a nominal residual

impulse. The extrapolation assures that va and the integral of gravitational
- acceleration change a negligible amount over the extrapolaticn interval which is

usually true for intervals of the order of a half second.

Multiple Thrust Periods - As has been pointed out previcusly, more r~cmplicated

missions such as placing a satellite into a high alti{tude orbit often have “wo
or more thrust pericds. During the various thrust perlod:, th; ncrminal thrust
direct.on in general has different crientations with rerpect to Vgx . pince
the computational coordinate system usually remains fixed. In this caso it is
necesgsary to reso{vg—either Vg or the steering cormmands themcelves fron
inertial to vehicle coordinates. This can be done either in the computer or

by means of an analog resolver chain. Cutoff {s generated on the basis of some

major comporent of ﬁg




